4 research outputs found

    Distributed Space Traffic Management Solutions with Emerging New Space Industry

    Get PDF
    Day-to-day services, from weather forecast to logistics, rely on space-based infrastructures whose integrity is crucial to stakeholders and end-users worldwide. Current trends point towards congestion of the near-Earth space environment increasing at a rate greater than existing systems support, and thus demand novel cost-efficient approaches to traffic detection, characterization, tracking, and management to ensure space remains a safe, integral part of societies and economies worldwide. Whereas machine-learning (ML) and artificial intelligence (AI) have been extensively proposed to address congestion and alleviate big-data problems of the future, little has been done so far to tackle the need for transnational coordination and conflict-resolution in the context of space traffic management (STM). In STM, there is an ever-growing need for distributing information and coordinating actions (e.g., avoidance manoeuvres) to reduce the operational costs borne by individual entities and to decrease the latencies of actionable responses taken upon the detection of hazardous conditions by one-to-two orders of magnitude. However, these needs are not exclusive to STM, as evidenced by the widespread adoption of solutions to distributing, coordinating, and automating actions in other industries such as air traffic management (ATM), where a short-range airborne collision avoidance system (ACAS) automatically coordinates evasive manoeuvres whenever a conjunction is detected. Within this context, this paper aims at establishing a roadmap of promising technologies (e.g., blockchain), protocols and processes that could be adapted from different domains (railway, automotive, aerial, and maritime) to build an integrated traffic coordination and communication architecture to simplify and harmonise stakeholders’ satellite operations. This paper is organised into seven sections. First, Section 1 introduces the problem of STM, highlighting its complexity. Following this introduction, Section 2 discusses needs and requirements of various stakeholders such as commercial operators, space situational awareness (SSA) service providers, launch-service providers, satellite and constellation owners, governmental agencies, regulators, and insurance companies. Then, Section 3 addresses existing gaps and challenges in STM, focusing on globally coordinated approaches. Next, Section 4 reviews technologies for distributed, secure, and persistent communications, and proposed solutions to address some of these challenges from non-space sectors. Thereafter, Section 5 briefly covers the history of STM proposals and presents the state-of-the-art solution being proposed for modern STM. Following this review, Section 6 devises a step-by-step plan for exploiting and deploying some of the identified technologies within a five-to-ten-year timeline to close several existing gaps. Finally, Section 7 concludes the paper

    A Model-Based Measure to Assess Operator Adherence to Procedures

    Get PDF
    Procedures play an important role in domains where humans interact with critical, complex systems. In such environments, the operator’s ability to correctly follow a given set of procedures can directly impact system safety. A quantitative measure of procedural adherence during training for complex system operation would be useful to assess trainee performance and evaluate a training program. This paper presents a novel model-based objective metric for quantifying procedural adherence in training. This metric is sensitive to both the number and nature of procedural deviations, and can be used with cluster analysis to classify trainee performance based on adherence. The metric was tested on an experimental data set gathered from volunteers using aircraft maintenance computer-based training (CBT). The properties of the metric are discussed, along with future possibilities

    Bringing high spatial resolution to the far-infrared A giant leap for astrophysics

    Get PDF
    The far-infrared (FIR) regime is one of the wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist. None of the medium-term satellite projects like SPICA, Millimetron, or the Origins Space Telescope will resolve this malady. For many research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited carbon monoxide (CO), light hydrides, and especially from water lines would open the door for transformative science. A main theme will be to trace the role of water in proto-planetary discs, to observationally advance our understanding of the planet formation process and, intimately related to that, the pathways to habitable planets and the emergence of life. Furthermore, key observations will zoom into the physics and chemistry of the star-formation process in our own Galaxy, as well as in external galaxies. The FIR provides unique tools to investigate in particular the energetics of heating, cooling, and shocks. The velocity-resolved data in these tracers will reveal the detailed dynamics engrained in these processes in a spatially resolved fashion, and will deliver the perfect synergy with ground-based molecular line data for the colder dense gas
    corecore